Mutational analysis of SCN5A gene in long QT syndrome
نویسندگان
چکیده
The SCN5A gene encodes for the INa channel implicated in long QT syndrome type-3 (LQTS-type-3). Clinical symptoms of this type are lethal as most patients had a sudden death during sleep. Screening of SCN5A in South Indian cohort by PCR-SSCP analyses revealed five polymorphisms - A29A (exon-2), H558R (exon-12), E1061E and S1074R (exon-17) and IVS25 + 65G > A (exon-25) respectively. In-silico and statistical analyses were performed on all the polymorphisms. Exon-2 of SCN5A gene revealed A282G polymorphism (rs6599230), resulting in alanine for alanine (A29A) silent substitution in the N-terminus of SCN5A protein. Exon-12 showed A1868G polymorphism (H558R - rs1805124) and its 'AA' genotype and 'A' allele frequency were found to be higher in LQTS patients pointing towards its role in LQTS etiology. Two polymorphisms A3378G (E1061E) and the novel C3417A (S1074R) were identified as compound heterozygotes/genetic compounds in exon-17 of SCN5A located in the DIIS6-DIIIS1 domain of the SCN5A transmembrane protein. IVS25 + 65G > A was identified in intron-25 of SCN5A. The 'G' allele was identified as the risk allele. Variations were identified in in-silico analyses which revealed that these genetic compounds may lead to downstream signaling variations causing aberrations in sodium channel functions leading to prolonged QTc. The compound heterozygotes of SCN5A gene polymorphisms revealed a significant association which may be deleterious/lethal leading to an aberrant sodium ion channel causing prolonged QTc.
منابع مشابه
Mutation screening in KCNQ1, HERG, KCNE1, KCNE2 and SCN5A genes in a long QT syndrome family.
INTRODUCTION Long QT syndrome (LQTS), an inherited cardiac arrhythmia, is a disorder of ventricular repolarisation characterised by electrocardiographic abnormalities and the onset of torsades de pointes leading to syncope and sudden death. Genetic polymorphisms in 5 well-characterised cardiac ion channel genes have been identified to be responsible for the disorder. The aim of this study is to...
متن کاملMutation Analysis of KCNQ1, KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients.
Long QT syndrome (LQTS) is a genetic cardiac disease. Gene mutation affects the structure or function of ion channels that are associated with a high risk of sudden death. The goal of this study was to determine the frequency of KCNQ1, KCNH2, and SCN5A mutations in LQTS in a Taiwanese population. Genomic DNA was extracted from peripheral blood samples obtained from 5 patients with LQTS and the ...
متن کاملKCNE1 and KCNE2 variants in Patients with Long QT Syndrome
Introduction: Long QT syndrome (LQTS) is a type of ventricular arrhythmia characterized by prolonged QT intervals on electrocardiogram or delay in ventricular repolarization and it can lead to syncope, seizure and sudden cardiac death. Here, KCNE1 and KCNE2 variants are studied among Iranian affected families with this syndrome. Materials and Methods: Fifty patients referring to Rajaei Cardiov...
متن کاملDrug-induced long-QT syndrome associated with a subclinical SCN5A mutation.
BACKGROUND Subclinical mutations in genes associated with the congenital long-QT syndromes (LQTS) have been suggested as a risk factor for drug-induced LQTS and accompanying life-threatening arrhythmias. Recent studies have identified genetic variants of the cardiac K+ channel genes predisposing affected individuals to acquired LQTS. We have identified a novel Na+ channel mutation in an individ...
متن کاملSpectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2.
BACKGROUND Long-QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on ECG and presence of syncope, seizures, and sudden death. Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Mutations in KVLQT1 and KCNE1 also cause the Jervell and Lange-Nielsen syndrome, a form of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015